A Diagnostic Modeling Study of the Stratiform Region Associated with a Tropical Squall Line

1986 ◽  
Vol 43 (13) ◽  
pp. 1356-1378 ◽  
Author(s):  
Steven A. Rutledge
2009 ◽  
Vol 66 (1) ◽  
pp. 3-21 ◽  
Author(s):  
Xiaowen Li ◽  
Wei-Kuo Tao ◽  
Alexander P. Khain ◽  
Joanne Simpson ◽  
Daniel E. Johnson

Abstract A two-dimensional cloud-resolving model is used to study the sensitivities of two microphysical schemes, a bulk scheme and an explicit spectral bin scheme, in simulating a midlatitude summertime squall line [Preliminary Regional Experiment for Storm-Scale Operational and Research Meteorology (PRE-STORM), 10–11 June 1985]. In this first part of a two-part paper, the developing and mature stages of simulated storms are compared in detail. Some variables observed during the field campaign are also presented for validation. It is found that both schemes agree well with each other, and also with published observations and retrievals, in terms of storm structures and evolution, average storm flow patterns, pressure and temperature perturbations, and total heating profiles. The bin scheme is able to produce a much more extensive and homogeneous stratiform region, which compares better with observations. However, instantaneous fields and high temporal resolution analyses show distinct characteristics in the two simulations. During the mature stage, the bulk simulation produces a multicell storm with convective cells embedded in its stratiform region. Its leading convection also shows a distinct life cycle (strong evolution). In contrast, the bin simulation produces a unicell storm with little temporal variation in its leading cell regeneration (weak evolution). More detailed, high-resolution observations are needed to validate and, perhaps, generalize these model results. Interactions between the cloud microphysics and storm dynamics that produce the sensitivities described here are discussed in detail in Part II of this paper.


2010 ◽  
Vol 138 (11) ◽  
pp. 4076-4097 ◽  
Author(s):  
George H. Bryan ◽  
Matthew D. Parker

Abstract Rawinsonde data were collected before and during passage of a squall line in Oklahoma on 15 May 2009 during the Second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2). Nine soundings were released within 3 h, allowing for unprecedented analysis of the squall line’s internal structure and nearby environment. Four soundings were released in the prestorm environment and they document the following features: low-level cooling associated with the reduction of solar isolation by a cirrus anvil; abrupt warming (1.5 K in 30 min) above the boundary layer, which is probably attributable to a gravity wave; increases in both low-level and deep-layer vertical wind shear within 100 km of the squall line; and evidence of ascent extending at least 75 km ahead of the squall line. The next sounding was released ∼5 km ahead of the squall line’s gust front; it documented a moist absolutely unstable layer within a 2-km-deep layer of ascent, with vertical air velocity of approximately 6 m s−1. Another sounding was released after the gust front passed but before precipitation began; this sounding showed the cold pool to be ∼4 km deep, with a cold pool intensity C ≈ 35 m s−1, even though this sounding was located only 8 km behind the surface gust front. The final three soundings were released in the trailing stratiform region of the squall line, and they showed typical features such as: “onion”-shaped soundings, nearly uniform equivalent potential temperature over a deep layer, and an elevated rear inflow jet. The cold pool was 4.7 km deep in the trailing stratiform region, and extended ∼1 km above the melting level, suggesting that sublimation was a contributor to cold pool development. A mesoscale analysis of the sounding data shows an upshear tilt to the squall line, which is consistent with the cold pool intensity C being much larger than a measure of environmental vertical wind shear ΔU. This dataset should be useful for evaluating cloud-scale numerical model simulations and analytic theory, but the authors argue that additional observations of this type should be collected in future field projects.


2016 ◽  
Vol 144 (1) ◽  
pp. 371-392 ◽  
Author(s):  
Yujie Pan ◽  
Ming Xue ◽  
Guoqing Ge

Abstract In this study, a new set of reflectivity equations are introduced into the Advanced Regional Prediction System (ARPS) cloud analysis system. This set of equations incorporates double-moment microphysics information in the analysis by adopting a set of diagnostic relationships between the intercept parameters and the corresponding mass mixing ratios. A reflectivity- and temperature-based graupel classification scheme is also implemented according to a hydrometeor identification (HID) diagram. A squall line that occurred on 23 April 2007 over southern China containing a pronounced trailing stratiform precipitation region is used as a test case to evaluate the impacts of the enhanced cloud analysis scheme. The results show that using the enhanced cloud analysis scheme is able to better capture the characteristics of the squall line in the forecast. The predicted squall line exhibits a wider stratiform region and a more clearly defined transition zone between the leading convection and the trailing stratiform precipitation region agreeing better with observations in general, when using the enhanced cloud analysis together with the two-moment microphysics scheme. The quantitative precipitation forecast skill score is also improved.


2019 ◽  
Vol 148 (1) ◽  
pp. 289-311 ◽  
Author(s):  
Adam Varble ◽  
Hugh Morrison ◽  
Edward Zipser

Abstract Simulations of a squall line observed on 20 May 2011 during the Midlatitude Continental Convective Clouds Experiment (MC3E) using 750- and 250-m horizontal grid spacing are performed. The higher-resolution simulation has less upshear-tilted deep convection and a more elevated rear inflow jet than the coarser-resolution simulation in better agreement with radar observations. A stronger cold pool eventually develops in the 250-m run; however, the more elevated rear inflow counteracts the cold pool circulation to produce more upright convective cores relative to the 750-m run. The differing structure in the 750-m run produces excessive midlevel front-to-rear detrainment, reinforcing excessive latent cooling and rear inflow descent at the rear of the stratiform region in a positive feedback. The contrasting mesoscale circulations are connected to early stage deep convective draft differences in the two simulations. Convective downdraft condensate mass, latent cooling, and downward motion all increase with downdraft area similarly in both simulations. However, the 750-m run has a relatively greater number of wide and fewer narrow downdrafts than the 250-m run averaged to the same 750-m grid, a consequence of downdrafts being under-resolved in the 750-m run. Under-resolved downdrafts in the 750-m run are associated with under-resolved updrafts and transport mid–upper-level zonal momentum downward to low levels too efficiently in the early stage deep convection. These results imply that under-resolved convective drafts in simulations may vertically transport air too efficiently and too far vertically, potentially biasing buoyancy and momentum distributions that impact mesoscale convective system evolution.


2015 ◽  
Vol 143 (1) ◽  
pp. 341-362 ◽  
Author(s):  
Roger M. Wakimoto ◽  
Phillip Stauffer ◽  
Wen-Chau Lee

Abstract A quasi-linear convective line with a trailing stratiform region developed during the Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX) while being sampled by two airborne Doppler radars. The finescale reflectivity and Doppler velocities recorded by the radars documented the evolution of the convective line. Bands of positive and negative vertical vorticity oriented parallel to the convective line were resolved in the analysis. This type of structure has rarely been reported in the literature and appears to be a result of the tilting and subsequent stretching of ambient horizontal vorticity produced by the low-level wind shear vector with a significant along-line component. The radar analysis also documented the evolution of an embedded bow echo within the convective line. Embedded bow echoes have been documented for a number of years; however, a detailed analysis of their kinematic structure has not been previously reported in the literature. The counterrotating circulation patterns that are characteristic of bow echoes appeared to be a result of tilting and stretching of the horizontal vorticity produced in the cold pool. The analysis suggests that the location along the convective line where embedded bow echoes form depends on the local depth of the cold pool. The rear-inflow jet is largely driven by the combined effects of the counterrotating vortices and the upshear-tilted updraft.


2008 ◽  
Vol 136 (6) ◽  
pp. 2228-2245 ◽  
Author(s):  
Youngsun Jung ◽  
Guifu Zhang ◽  
Ming Xue

Abstract A radar simulator for polarimetric radar variables, including reflectivities at horizontal and vertical polarizations, the differential reflectivity, and the specific differential phase, has been developed. This simulator serves as a test bed for developing and testing forward observation operators of polarimetric radar variables that are needed when directly assimilating these variables into storm-scale numerical weather prediction (NWP) models, using either variational or ensemble-based assimilation methods. The simulator takes as input the results of high-resolution NWP model simulations with ice microphysics and produces simulated polarimetric radar data that may also contain simulated errors. It is developed based on calculations of electromagnetic wave propagation and scattering at the S band of wavelength 10.7 cm in a hydrometeor-containing atmosphere. The T-matrix method is used for the scattering calculation of raindrops and the Rayleigh scattering approximation is applied to snow and hail particles. The polarimetric variables are expressed as functions of the hydrometeor mixing ratios as well as their corresponding drop size distribution parameters and densities. The presence of wet snow and wet hail in the melting layer is accounted for by using a new, relatively simple melting model that defines the water fraction in the melting snow or hail. The effect of varying density due to the melting snow or hail is also included. Vertical cross sections and profiles of the polarimetric variables for a simulated mature multicellular squall-line system and a supercell storm show that polarimetric signatures of the bright band in the stratiform region and those associated with deep convection are well captured by the simulator.


Sign in / Sign up

Export Citation Format

Share Document